Effect of continuous arterial blood flow in patients with rotary cardiac assist device on the washout of a stenosis wake in the carotid bifurcation: a computer simulation study.
نویسندگان
چکیده
In recipients of rotary blood pumps for cardiac assist, the pulsatility of arterial flow is considerably diminished. This influences the shear stress patterns and streamlines in the arterial bed, with potential influence on washout and plaque growth. These effects may be aggravated in the recirculation area of stenoses, and therefore, exclude patients with atherosclerosis from the therapy with these devices. A numerical study was performed for the human carotid artery bifurcation with the assumption of a massive stenosis (75% reduction of cross-section area) in the carotid bulb. Four different flow time patterns (no support to full pump support) were applied. Flow patterns and particle residence time within the recirculation region were calculated, once within the relevant volume behind the stenosis and and once within a small region directly at the posterior heel of the stenosis. The flow patterns showed a considerable radial vorticity behind the stenosis. Mean particle residence time in the whole recirculation region was 15% less for high pump support (nearly continuous flow) compared to the natural flow pattern (0.19s compared to 0.22s), and nearly identical for the small heel region (0.28 to 0.27s). The flow simulation demonstrates, that even in the case of a pre-existing stenosis, the local effects of continuous flow on particle residence times are rather minimal (as was shown previously for intact arterial geometries). Therefore, from the point of macroscopic flow field analysis, continuous flow should not enhance the thromboembolic risk in ventricular assist device recipients.
منابع مشابه
Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملA Lumped Parameter Method to Calculate the Effect of Internal Carotid Artery Occlusion on Anterior Cerebral Artery Pressure Waveform
Background and Objective: Numerical modeling of biological structures would be very helpful tool to analyze hundreds of human body phenomena and also diseases diagnosis. One physiologic phenomenon is blood circulatory system and heart hemodynamic performance that can be simulated by utilizing lumped method. In this study, we can predict hemodynamic behavior of one artery of circulatory system (...
متن کاملPrevalence of carotid arterial diseases in patients undergoing CABG operations
Introduction: Prevalence of stroke following coronary artery bypass graft surgery (CABG) is % 2.1-5.2 and associated with high mortality. The purpose of this study was to investigate the prevalence of carotid artery disease in patients undergoing CABG surgery. Methods: This cross-sectional study was performed in the years 2010-2011 on 192 patients who underwent open heart surgery (CABG) in...
متن کاملA Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)
The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 40 10 شماره
صفحات -
تاریخ انتشار 2007